PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

KANURU, VIJAYAWADA

II B.Tech – II Semester(CSE/IT)

Design and Analysis of Algorithms (19IT3404)

Offering Branches	CSE, IT			
Course Category:	Program Core	Credits:	3	
Course Type	e: THEORY	Lecture-Tutorial- Practical:	3-0-0	
	Discrete mathematics and probability, Data Structure	Continuous Evaluation:	30	
Prerequisite		Semester End Evaluation:	70	
		Total Marks:	100	
Course Outcomes				
Upon successful completion of the course, the student will be able to:				
CO1	Understand the fundamental concepts of algorithm analysis and L2 L2		L2	
CO2	Apply various algorithm design techniques for solving problems L3			
CO3	Analyze the performance of different algorithms in divide and L4 L4			
CO4	Analyze the feasible solutions to find optimal one for the given L4 problem.			
Course Content				
UNIT-1	Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving.CC CC CC Fundamentals of the Analysis of Algorithm Efficiency: Analysis framework and Asymptotic Notations and Basic Efficiency Classes. Introduction to Brute Force Technique, Exhaustive Search.CC CC CC		CO1, CO2	
UNIT-2	Divide and Conquer: Introduction, Merge sort, Quick sort, Binary Search, Finding Maximum and Minimum, Strassen's Matrix Multiplication.		CO1, CO2, CO3	
UNIT-3	The Greedy Method: Introduction, Huff Minimum Coin Change problem, Knapsa with deadlines, Minimum Cost Spanning paths.	man Trees and codes, ck problem, Job sequencing Trees, Single Source Shortest	CO1, CO2, CO4	

UNIT-4	Dynamic Programming : Introduction, 0/1 Knapsack problem, All pairs shortest paths, Optimal Binary search trees, Travelling salesman problem.			
UNIT-5	 Back Tracking: Introduction, n-Queens problem, Sum of subsets, Hamiltonian cycle. Branch and Bound: Introduction, Assignment problem, Travelling Salesman problem. Introduction to Complexity classes: P and NP Problems, NP- Complete Problems. 			
Learning Resources				
Text Books	 1.Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education. 2.Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson. 3.Algorithm Design Techniques, NarasimhaKarumanchi, CareerMonk Publications, 2018. 			
Reference Books	 Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third Edition, 2012, MIT Press. Fundamentals of computer algorithms, Ellis Horowitz, SartajSahni, S. Rajasekharan, Second Edition, 2008, Universities Press. 			
e- Resources & other digital material	 https://nptel.ac.in/courses/106/106/106106131/ https://www.cmi.ac.in/~madhavan/ https://www.coursera.org/lecture/analysis-of-algorithms/resources-j https://www.geeksforgeeks.org/fundamentals-of-algorithms/ 	MWPy		